Kubernetes или с чего начать, чтобы понять что это и зачем он нужен

Данная статья рассчитана на новичков. Если вы опытный ниндзя, просто вспомните о том, как когда-то подобная информация могла быть полезной и для вас 😉


Kubernetes был создан Google на основе собственного опыта работы с контейнерами в производственной среде, и своим успехом он во многом обязан именно Google.

Так что же такое Kubernetes и для чего мы в принципе хотим использовать именно его, а не обычные контейнеры, например Docker.

Давайте вспомним что такое контейнеры.

Контейнеры упаковывают сервисы, составляющие приложение, и делают их переносимыми в различные вычислительные среды как для разработки и тестирования, так и для производственного использования. С помощью контейнеров легко быстро наращивать количество экземпляров приложений, чтобы соответствовать пиковому спросу. А поскольку контейнеры используют ресурсы ОС хоста, они намного легче виртуальных машин. Это означает, что контейнеры очень эффективно используют базовую серверную инфраструктуру.

Все было бы отлично, но есть одно но – container runtime API (API среды запуска контейнера) хорошо подходит для управления отдельными контейнерами, но совершенно не подходит для управления приложениями на сотне контейнеров и на большом количестве хостов.

Контейнерам надо подключаться к внешнему миру и быть управляемыми для балансировки нагрузки, распределения и планирования.

Вот для такого и нужен Kubernetes.

Kubernetes – это система с открытым исходным кодом для развертывания, масштабирования и управления контейнезированными приложениями.

Kubernetes по сути является не просто системой оркестрации. Технически оркестрация это про выполнение определенного рабочего процесса: сначала сделай A, затем B, затем C.

Kubernetes же устраняет прямую необходимость в этом. В нем есть процессы управления, что по факту независимы и компонуемы. Главная задача процессов управления перевести текущее состояние к нужному состоянию. Теперь нам неважно какой будет маршрут от А до С, что исключает централизованный контроль.
Благодаря этому система теперь более проста в использовании, мощная, надежная, а также устойчивая и расширяемая.

Контейнеры позволяют чтобы приложения были поделены на более мелкие части с четким разделением задач. Уровень абстракции, предоставляемый для отдельного образа контейнера, позволяет нам понять как строятся распределенные приложения. Такой модульный подход дает возможность более быстро осуществлять разработку с помощью небольших и более целенаправленных групп, каждая из которых отвечает за определенные контейнеры. Это также позволяет нам изолировать зависимости и более широко использовать компоненты меньшего размера.

Сделать это только с помощью контейнеров не получится. А вот в Kubernetes это можно достичь с помощью Pods (подов).

Pod (под) – это группа из одного или более контейнера с общим хранилищем/сетевыми ресурсами и спецификацией как запускать контейнеры. Так же это отдельный инстанс приложения. Размещая контейнеры таким образом, Kubernetes устраняет соблазн втиснуть слишком много функций в один образ контейнера.

Концепция Service (Сервисы) в Kubernetes используется для группирования нескольких подов, которые выполняют те же функции. Сервисы легко настраиваются для таких целей как обнаружение, горизонтальное масштабирование и балансировка нагрузки.

Kubernetes, согласно официальной документации, так же сможет предоставить вам:

  • Используя имя DNS или собственный IP-адрес мониторинг сервисов и распределение нагрузки Kubernetes может обнаружить контейнер. При высоком трафике в нем Kubernetes сбалансирует нагрузку и распределить сетевой трафик так, что развертывание будет стабильным.

  • Система хранения по вашему выбору (например, локальное хранилище, провайдеры общедоступного облака и многое другое) может быть автоматически смонтирована с помощью оркестрации хранилища Kubernetes.

  • Автоматическое развертывание и откаты.

    Kubernetes через описание желаемого состояния развернутых контейнеров (манифесты, пишутся на yaml) может изменить фактическое состояние на желаемое. То есть создание новых контейнеров для развертывания, удаления существующих контейнеров и распределения всех их ресурсов в новый контейнер в Kubernetes можно автоматизировать.

  • Автоматическое распределение нагрузки.

    Kubernetes сам размещает контейнеры на ваших узлах так, чтобы наиболее эффективно использовать ресурсы. Вам остается только указать сколько ЦП, ОЗУ требуется каждому контейнеру и предоставить кластер узлов, где будут запущены контейнеры.

  • Самоконтроль.

    Если в работе контейнеров что-то пошло не так, то Kubernetes сам перезапускает, заменяет и завершает работу контейнеров, которые не проходят проверку работоспособности.

  • Управление конфиденциальной информацией и конфигурацией.
    Пароли, OAuth-токены и ключи SSH могут храниться и управляться Kubernetes без изменений образов контейнеров и не раскрывая конфиденциальную информацию в конфигурации стека.

Как видим на рисунке, это наглядная демонстрация того что есть внутри Kubernetes на примере одной мастер ноды (Master node) и одной воркер ноды (Worker node).

На Master node находится Kubernetes Control Plane (kube-scheduler, kube-controller-manager, kube-apiserver, etcd), с помощью которой происходит управление всем кластером Kubernetes.

На Worker node находятся container runtime (среда запуска контейнера), kubelet и kube-proxy.

Сontainer runtime это то на чем будет запущен ваш Под (например Docker, Container D, Rocket и т.д.).

Kubelet это основной «агент узла», который работает на каждой ноде. Гарантирует, что контейнеры в Pod(поде)работают и исправны. Не управляет контейнерами, которые не были созданы Kubernetes.

Kube-proxy это демон на каждой ноде, управляет правилами iptable на хосте для достижения балансировки нагрузки службы (одна из реализаций) и следит за изменениями Service и Endpoint.

Более детальное рассмотрение архитектуры, основных концепций Kubernetes в теории и главное на практике, наравне с такими интересными темами как кластеризация, highload web, администрирование СУБД, виртуализация и контейнеризация, оркестрация вы сможете изучить на курсе Administrator Linux. Advanced.

Также вы сможете получить ответы на такие вопросы как организовано сетевое взаимодействие в Kubernetes, как опубликовать приложение и как работает DNS в Kubernetes.

Ну и как же без такого важного вопроса как хранение данных, мониторинг и Kubernetes secrets Hashicorp Vault.

А прямо сейчас мы приглашаем всех желающих на бесплатный демо-урок по теме “«Кластерная файловая система Lustre»”. В рамках урока рассмотрим архитектуру и компоненты файловой системы Lustre. Разберем области применения файловой системы и ее особенности. Ответим на вопросы как используется file striping и что такое сетевой транспортный уровень LNET. На практической части установим и сконфигурируем файловую систему вручную. Посмотрим пример работы графической пользовательского интерфейса Integrated Manager for Lustre (IML)

Let’s block ads! (Why?)

Read More

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *